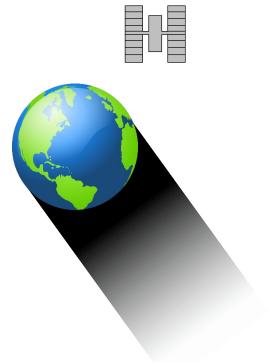
ANALYSIS WORKSHOP

GSFC · 2015

Dynamic Radiative Surface Properties with Origami-Inspired Topography

Rydge B. Mulford Mitchell J. Blanc Dr. Matthew R. Jones Dr. Brian D. Iverson

Heating Conditions in Orbit



 Large variations in thermal environment but static radiative surface properties

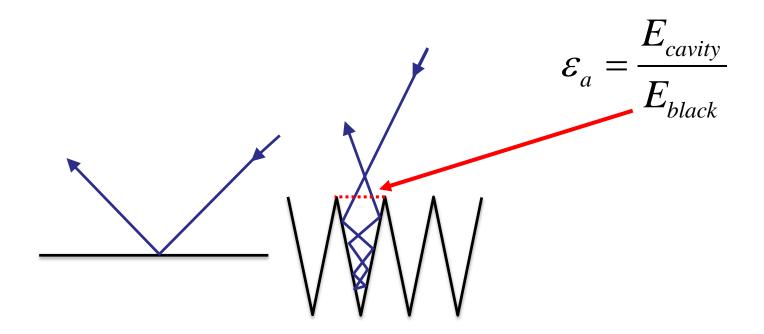
Current Solutions

- Multi-Layer Insulation
- Heaters
- Spectrally-selective surfaces
- Louvers

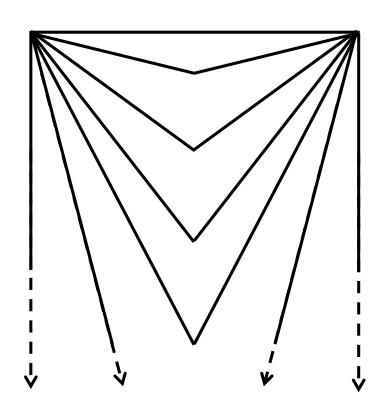
Variable Emissivity Devices

Surfaces capable of changing emissivity and absorptivity in real time

- Current variable emissivity devices rely on various mechanisms to vary emissivity
 - Modification of surface chemistry
 - Modification of heat transfer mode


What about geometry modifications?

The Cavity Effect


 Reflections inside a cavity create an increase in apparent surface properties

Apparent Surface Behavior

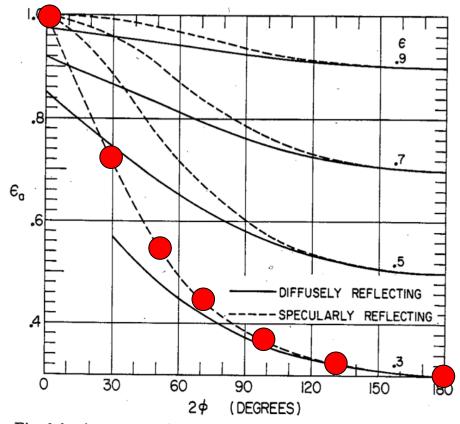


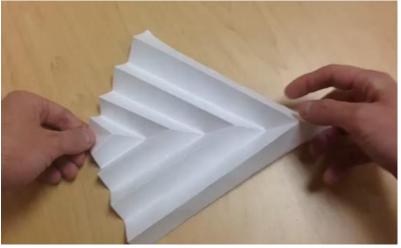
Fig. 6-6 Apparent emittance results for diffusely and specularly reflecting V-groove cavities.

Sparrow and Cess, Radiation Heat Transfer, 1978

Real World Implementation?

Origami and the Cavity Effect

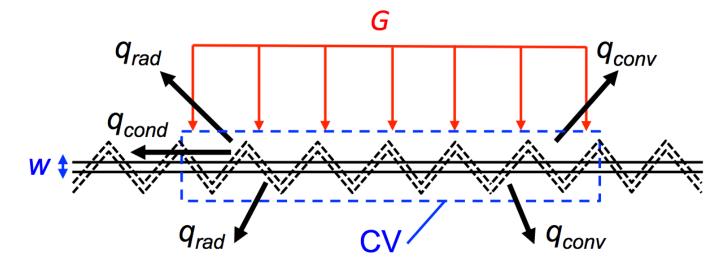
- 1D actuation manipulates cavity angle
- Simple to advanced fold patterns exist
- Models exist to describe accordion fold



Purpose of this Work

- Determine the following as a function of geometry:
 - Apparent absorptivity
 - Apparent emissivity
 - Rate of net radiative heat exchange with the surroundings

Methods must apply to any origami fold pattern.



Apparent Absorptivity

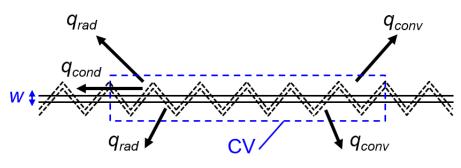
Apparent Absorptivity Energy Balance

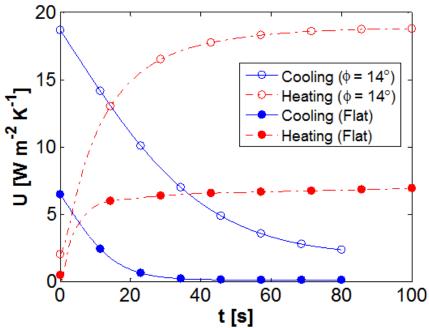
Energy Balance

$$mC_{P} \frac{dT}{dt} = \alpha_{a}G_{B}A_{B} - (q_{conv} + q_{rad} + q_{cond})$$

- Governing Equation
 - Non-dimensionalized
 - Overall heat transfer coefficient

$$\frac{d\theta}{dt} + \sin\left(\frac{\phi}{2}\right) \left[\frac{U(t)}{\rho w C_P}\right] \theta = \sin\left(\frac{\phi}{2}\right) \frac{\alpha_a G_B}{\rho w C_P}$$
Heat Loss Term Heat Addition Term

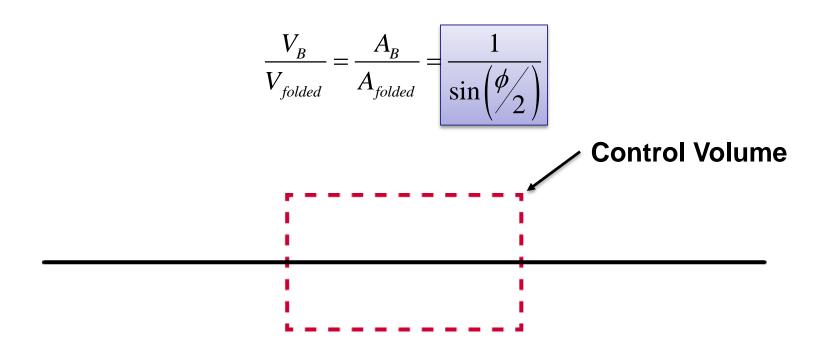

Heat Loss Characterization


 U(t) characterizes conductive, convective and radiative heat losses

$$\frac{d\theta}{dt} + \sin\left(\frac{\phi}{2}\right) \left[\frac{U(t)}{\rho w C_P}\right] \theta = \sin\left(\frac{\phi}{2}\right) \frac{\alpha_a G_B}{\rho w C_P}$$

$$U(t) = 2h + 2h_r + \frac{Sk}{A_B}$$

$$U(t) = \left[\frac{- rwC_P}{\sin(f/2)} \right] \frac{1}{q} \frac{dq}{dt}$$



Mass Compensation

Volume Ratio

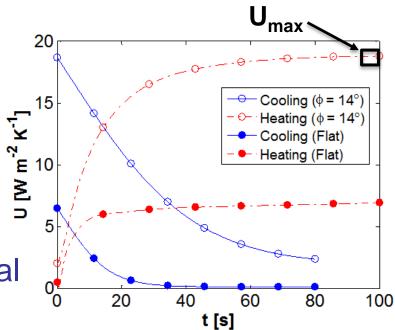
- Accounts for increasing mass in control volume as sample is actuated
- Different origami folds would have different ratios

Inverse Model Solutions

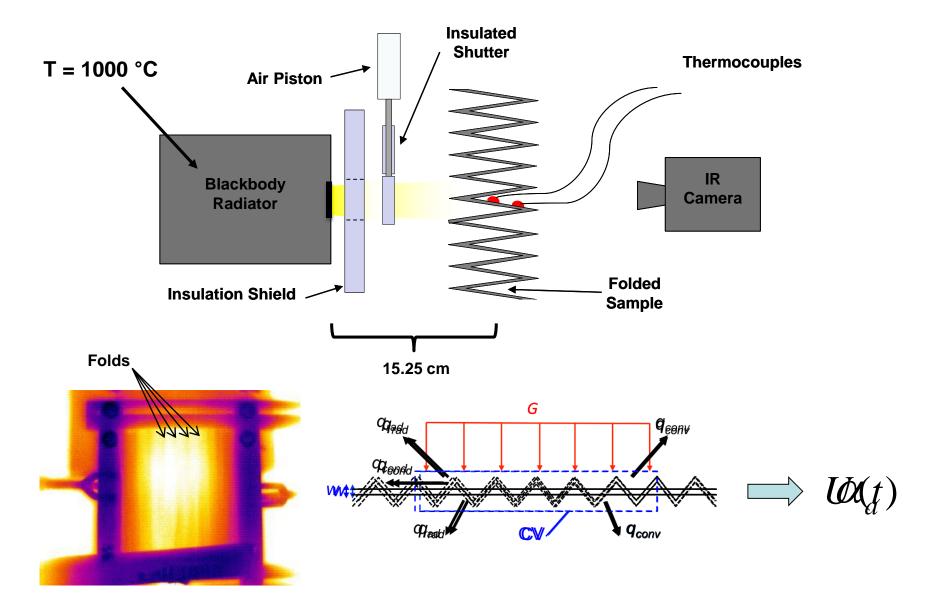
$$\left| \frac{d\theta}{dt} + \sin\left(\frac{\phi}{2}\right) \right| \frac{U(t)}{\rho w C_P} dt = \sin\left(\frac{\phi}{2}\right) \frac{\alpha_a G_B}{\rho w C_P}$$

- Direct Method
 - The governing equation was rearranged
- Integrating Factor Method
 - An integrating factor was used to solve the differential equation

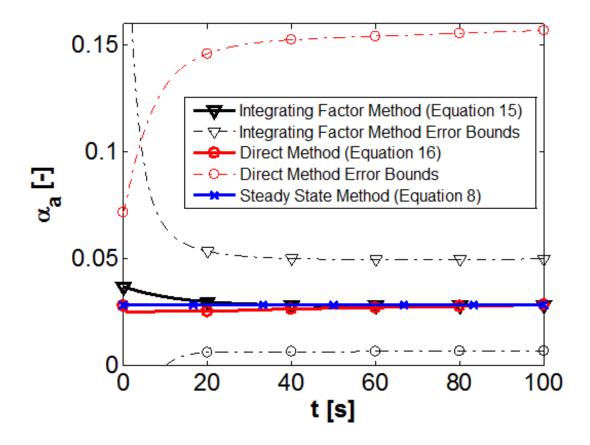
Integrating Factor Method	Direct Method			
$\alpha_{a} = \frac{\frac{U_{\text{max}}}{G_{B}} (\theta - \theta_{0})}{1 - e^{\frac{-U_{\text{max}}t}{\rho_{W}C_{P}} \sin\left(\frac{\phi}{2}\right)}}$	$\alpha_{a} = \frac{\rho w C_{P}}{G_{B} \sin\left(\frac{\phi}{2}\right)} \left[\frac{d\theta}{dt} + \sin\left(\frac{\phi}{2}\right) \frac{U(\Delta T(t))}{\rho w C_{P}} \theta \right]$			


Steady State Model

• The steady state energy balance gives absorptivity as a function of G, θ_{SS} and U_{max}


 All solutions require experimental temperature measurements

Experimental Setup



Experimental Results (Flat Sample)

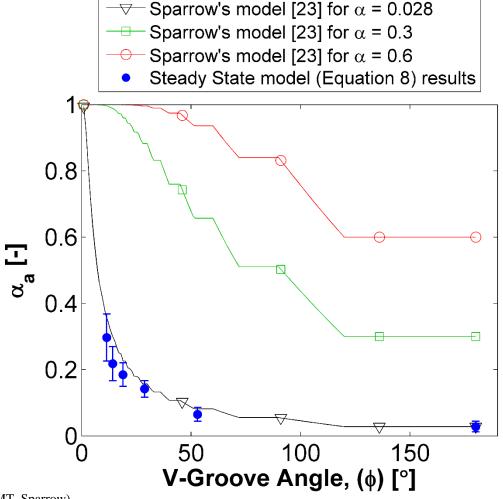
Absorptivity results with respect to time for three methods

Flat Sample Validation

- Flat sample was measured with a reflectometer
 - Independent verification of inverse model results

	Spectral Range (Micrometers)					
Test #	1.5 – 2.0	2.0 – 3.5	3.0 - 4.0	4.0 – 5.0	5.0 – 10.5	10.5 – 21.0
	Spectral Reflectivity					
1	0.965	0.969	0.966	0.977	0.982	1.005
2	0.967	0.972	0.971	0.973	0.983	1.01
3	0.965	0.969	0.973	0.977	0.98	0.986

Emissometer Absorptivity	0.028
Steady State Model Absorptivity	0.028


$$\alpha = \sum_{i=1}^{6} F_i \left(1 - \rho_{r,i} \right)$$

Folded Sample Validation

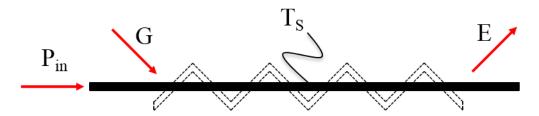
• Experimental and theoretical results show that a surface with any intrinsic absorptivity can achieve $\alpha_a = 1$

Sparrow's Equations

$$\alpha_a = 1 - (1 - \alpha X')(1 - \alpha)^{n-1}$$
where:

$$X' = \frac{\sin\left[\left(n - \frac{1}{2}\right)\phi\right]}{\sin\left(\frac{\phi}{2}\right)}$$

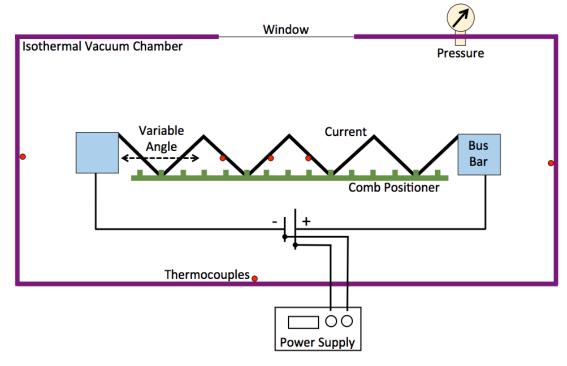
$$n = \left| \frac{180}{\phi} + \frac{1}{2} \right|$$


Apparent Emissivity

Theoretical Apparent Emissivity

- A new experimental approach is necessary to find ϵ_a
- We will consider an origami surface subjected to uniform electrical heating (P_{in})

$$P_{in} = A_{projected}(\phi)E(\phi) - A_{projected}(\phi)\alpha_a(\phi)G$$
 \Longrightarrow $A_{projected} = A_{initial}\sin\left(\frac{\phi}{2}\right)$


$$\varepsilon_{a} = \frac{P_{in}}{A_{i} \sin\left(\frac{\phi}{2}\right) \sigma T_{s}^{4}} + \alpha_{a} \frac{T_{surr}^{4}}{T_{s}^{4}}$$

Apparent Emissivity Experimental Setup

- Experiments were performed in a vacuum chamber evacuated to a vacuum of 0.015 Torr
- Surface was heated using Joule heating
- A correction was made for the heating of the bus bars and losses in the electrical wires

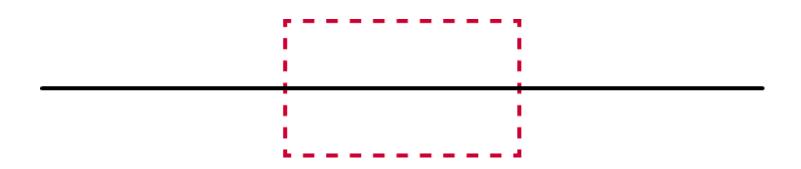
Apparent Emissivity Results

- Experimental results are not yet complete
- Modest's equation will be used to benchmark apparent emissivity results (diffuse emitter, specular reflector):

$$\varepsilon_a = \frac{\varepsilon}{\sin\phi} \bigg[1 - \varepsilon \sum_{k=1}^n \rho^{k-1} \Big(1 - \sin \big(k \phi \big) \Big) \bigg], \quad n < \frac{\pi}{2\phi} \qquad \text{From Modest, 2}^{\text{nd}} \ \text{ed.}$$

 Modest's equation can be used for apparent emissivity when considering net radiative heat exchange

Net Radiative Heat Exchange


(Diffuse emitter, specular reflector, collimated/diffuse irradiation)

Variable Surface Area Considerations

- As the surface is compressed:
 - The apparent emissivity/absorptivity increase
 - The emitting area decreases
- What will be the effect on total radiative heat exchange with the surroundings?

Theoretical Heat Rate

- Same energy balance and governing equation as apparent emissivity analysis
- For a diffusely emitting, specularly reflecting surface

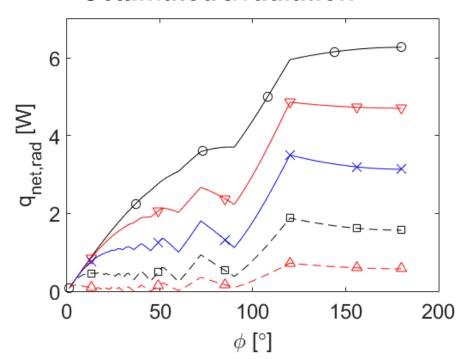
Collimated Irradiation

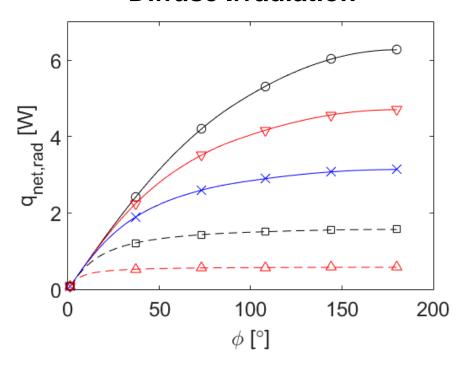
 $lpha_a=$ Sparrow's Equations

$$q_{net,radiation} = \sigma A_i \sin\left(\frac{\phi}{2}\right) \left(\varepsilon_a T_s^4 - \alpha_a T_{surr}^4\right)$$

Diffuse Irradiation

$$\alpha_a = \varepsilon_a$$


$$q_{net,radiation} = \varepsilon_a \sigma A_i \sin\left(\frac{\phi}{2}\right) \left(T_s^4 - T_{surr}^4\right)$$


Theoretical Heat Rate Results

Collimated Irradiation

Diffuse Irradiation

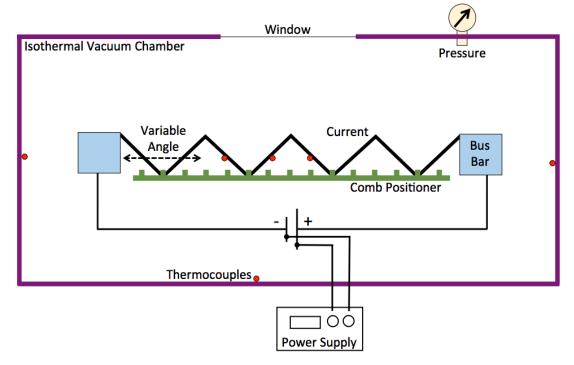
- Heat rate decreases with decreasing fold angle
- Collimated irradiation doesn't decrease monotonically

$$-\varepsilon = 0.8$$

$$-\varepsilon = 0.6$$

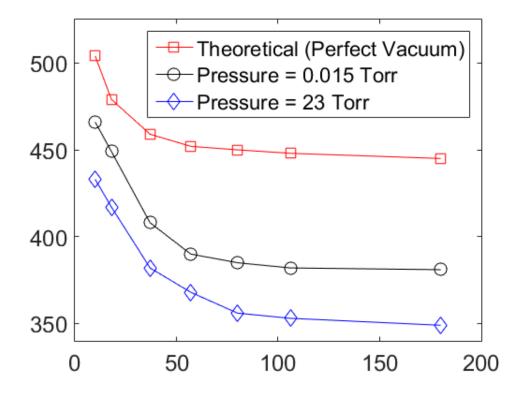
$$-\varepsilon = 0.4$$

$$-\varepsilon = 0.2$$


$$-\varepsilon = 0.074$$

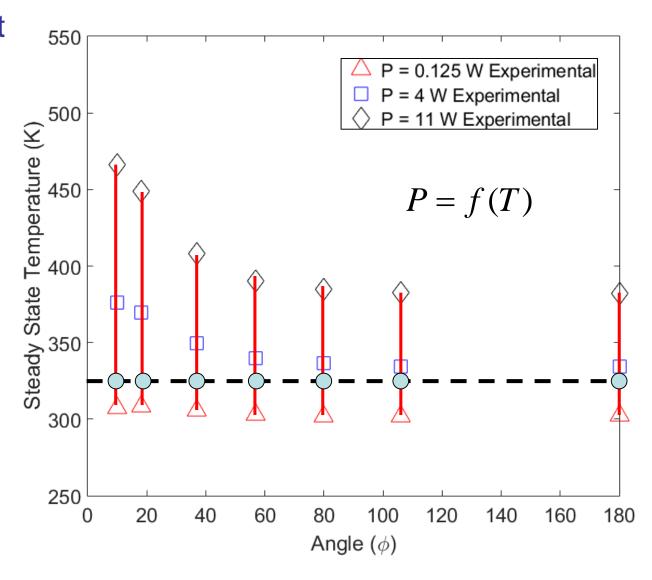
Heat Rate Experimental Setup

- Same setup as used in the apparent emissivity test
- Temperature data collected at three power levels and interpolated to find power as a function of fold angle at a constant temperature (T = 325 K)



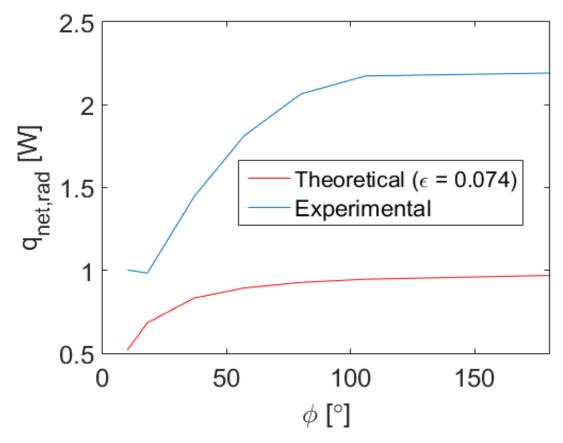
Experimental Results – Temperature

- Guys and Ellis found a pressure of 10⁻⁵ Torr is necessary to eliminate conductive losses
- Our setup is limited to 0.015 Torr



Experimental Results – Power Derivation

- Defined a set temperature
- Curve fit temperature vs. power data
- 3) Evaluated T
 = 325 K at
 each angle
 to find power
 as a function
 of angle



Experimental Results – Power

- Net radiative heat exchange for an origami surface as a function of cavity angle for a constant T = 325 K
- Heat rate decreases as cavity angle decreases

Conclusions

- Experimental facilities have been developed to find radiative properties as a function of cavity angle
- These methods may be used to characterize origami folds that cannot be modeled theoretically
- The heat rate decreases as the cavity angle is decreased because the angle term approaches zero
- Origami surfaces are capable of varying their apparent absorptivity and emissivity from very low (0.028) to unity

Future Work

- Surfaces that maintain a constant projected surface area should be explored.
- Investigate 2D and 3D origami surfaces
- Characterize spectral properties using FTIR
- Maintain the temperature of an origami surface through actuation under varying irradiation conditions